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dementia have recently been proven to be common (and underrecognized)
complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated
with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline
and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes
include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important
risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and
hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads
to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are
the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny
of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its
traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How
can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an
important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the
concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much
insulin in the brain may be associated with reduced amyloid-β (Aβ) clearance due to competition for their
common and main depurative mechanism — the Insulin-Degrading Enzyme (IDE). Since IDE is much more
selective for insulin than for Aβ, brain hyperinsulinism may deprive Aβ of its main clearance mechanism.
Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperpho-
sphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy. In
fact, diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis (White Matter
High-Intensity Lesions — WMHL). WMHL are usually present at different degrees in brain scans of elderly
people. People with more advanced WMHL are at increased risk for executive dysfunction, cognitive
impairment and dementia. Clinical phenotypes associated with insulin resistance possibly represent true
clinical models for brain and systemic aging.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Diabetes mellitus (DM) is one of the most important and
prevalent chronic diseases. It currently affects 250 million people
worldwide, with 6 million new cases reported each year [1]. This
prevalence rises with age from 12% in people aged 65 to 70 to 15%
in people over age 80 [2]. DM is a systemic disease that can damage
any organ in the body [3]. Complications include pathologic changes
involving both small and large vessels, cranial and peripheral
nerves, skin, and eyes. These organic lesions may lead to hyperten-
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sion, renal failure, vision loss, autonomic and peripheral neuropathy,
peripheral vascular disease, myocardial infarction and cerebrovas-
cular disease, including stroke [3].

In recent years, significantly more interest has been dedicated to
the effect of diabetes on the brain. Along with cerebrovascular disease,
diabetes is implicated in the development of other neurological co-
morbidities. Less addressed and not as well recognized complications
of DM are cognitive dysfunction and dementia. Like diabetes, cognitive
dysfunction represents another serious problem and is rising in
prevalence worldwide, especially among the elderly [4]. Diabetes
mellitus has been implicated as risk factor for dementia not only of
vascular type but also to Alzheimer's disease (AD) [5] Patients with
type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)
have been found to present cognitive deficits, associated with reduced
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Table 1
Summary of cognitive functions found to be affected in Type 1 (T1DM) and Type 2
diabetes mellitus (T2DM)

Cognitive functions T1DM T2DM

Verbal memory ↓ ↓⁎
Nonverbal memory ↓ ↓⁎
Attention ↓⁎ ↓
Visuospatial performance ↓⁎ _
Processing speed ↓⁎ ↓⁎
Executive function ↓⁎ ↓⁎
Psychomotor efficiency ↓⁎ _
General intelligence ↓ _

↓: decreased; − does not seem to be affected or evidence lacking. Note: domains
marked by asterisks have particularly strong supporting data (see Refs. [23] and [62]).

Table 2
Main types of cognitive tests utilized in the specific assessment of the diverse cognitive
subfunctions cited in Table 1

Cognitive
functions

Assessment

Verbal memory Paragraph recall/Contextual tasks (immediate; delayed); Word List
Recall/Noncontextual tasks; (immediate; delayed); Verbal
recognition.

Nonverbal
memory

Figural reproductions (immediate; delayed).

Attention Arithmetic performance (e.g., serial subtraction tasks); Digit Span
subtest of the WAIS-R (Wechsler, 1981) and WAIS-III (Wechsler,
1997); Block Span (E. Kaplan et al., 1991).

Visuospatial
performance

Measures requiring construction and organization of objects or
designs.

Processing
speed

Reaction time measures; Digit Symbol Coding subtest of the WAIS-R;
Trails A (Spreen and Strauss, 1991); Stroop tasks (color or word
naming) (Spreen and Strauss, 1991).

Executive
function

Letter and category fluency measures; Abstract conceptualization
measures; Measures of verbal and nonverbal reasoning abilities;
Working memory tasks; Wisconsin Card Sorting (Berg, 1948); Trails B
(Spreen and Strauss, 1991); Stroop (Interference trial); (Spreen and
Strauss, 1991).

Psychomotor
efficiency

Grooved Pegboard task; Response Inhibition task.

General
intelligence

Verbal IQ score; Vocabulary and Block Design tasks.

See References [23] and [62] for details about the performance of diabetic subjects in
each test, as compared to controls.
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performance on multiple domains of cognitive function. Cognitive
impairment due to diabetes mainly occur at two main periods: during
the first 5–7 years of life when brain systems is in development; and
the period when the brain undergoes neurodegenerative changes due
to aging (older than 65 years) [6].

Anatomic brain alterations have been identified in patients with
both T1DM and T2DM [7–13]. These include generalized brain atrophy
and greater high-intensity lesion volumes, predominantly in the
subcortical regions [13]. Patients with diabetes mellitus are more
likely to present earlier andmore extense leukoaraiosis (White Matter
Hyperintense Lesions (WMHLs) [14]. Leukoaraiosis is a feature usually
found in brain scans performed in subjects over 80 years-old [15]. The
nature of these WMHLs is uncertain, but investigators have hypothe-
sized that they could represent demyelination, increased water
content or gliosis [16]. Magnetic Resonance Imaging (MRI) has also
demonstrated that subjects with T2DM have hippocampal and
amygdala atrophy relative to control subjects [17]. The hippocampus
and amygdala are responsible for such functions as memory and
behavior and, coincidentally, are also found to be atrophied in AD [17].
In addition, post-mortem studies of brains of DM patients with
dementia often reveal the coexistence of both brain microvascular
lesions and extense amyloid plaque burden, a characteristic of AD. This
phenomenon suggests that diabetes is a risk factor for both vascular
dementia (VD) and AD [18].

Many studies suggest that the risk of cognitive decline and
neurodegeneration is increased not only in DM, but also in patients
with pre-diabetes and metabolic syndrome (MetS) [19]. Individuals
with pre-diabetes are defined as those presenting impaired fasting
glucose and/or impaired glucose tolerance [20], what increase their
risk of developing frank DM. Those subjects already present insulin
resistance (IR) as a pathophysiological mechanism that is often
associated with MetS [19,20]. Metabolic syndrome, in turn, is a cluster
of interrelated cardiometabolic risk factors including visceral obesity,
dyslipidemia (elevated triglycerides and/or low HDL-cholesterol),
hypertension, dysglycemia (pre-diabetes or diabetes) [21] Subjects
with the MetS often also present a proinflammatory/prothrombotic
state. MetS has already been associated with silent strokes, cognitive
impairment, vascular dementia, Alzheimer's disease and the ‘frontal-
subcortical (geriatric) syndrome’ (FSCS) [see [22] for a review].

The exact pathophysiology of cognitive dysfunction and cerebral
lesions in diabetes mellitus is not completely understood, but it is
likely that hyperglycemia, vascular disease, hypoglycemia, and insulin
resistance play significant roles [23]. Diabetes mellitus may accelerate
the brain aging process, as it accelerates cerebral atrophy [24], thus
reducing cognitive reserve and the threshold for the development of
AD symptoms. In addition, DM may interfere with cerebral amyloid
and tau metabolism [25]. Alterations in insulin and glucose homo-
eostasis in the periphery may affect brain insulin and its receptor
functions [25], promoting increasing oligomerization of β-amyloid,
and inducing tau hyperphosphorylation [25,26]. Insulin resistance
seems also to accelerate biological aging by fostering the formation of
Advanced Glycation End-products (AGE) and, consequently, ROS
(Reactive Oxygen Species) [27]. The relation between insulin and
the metabolism of amyloid-β peptide (Aβ) and tau in particular has
been receiving increasing attention over the past few years [25,26].

2. Global and specific subtypes of cognitive dysfunction in:

2.1. Type 1 diabetes

Neuropsychological studies have shown that patients with T1DM
perform worse than patients without T1DM on several cognitive
functions. Although the degree of magnitude is variable, this worse
performance in cognitive functions is already noticeable during
childhood [28]. These cognitive functions include specific deficits of
intelligence, attention, processing speed, memory, and executive skills
[29–38]. Cognitive deficits were mainly identified in information
processing speed [29,30] and psychomotor abilities. The progression
and accumulation of these specific deficits can lead to global deficits
and dementia in diabetic patients [31,32]. The cognitive performance
of diabetic patients is summarized in Table 1 and the neurocognitive
tests utilized on these studies are shown on Table 2.

In addition, other deficits were also identified such as those
involving motor speed [33,34,35] and strength [35], vocabulary
[36,37], general intelligence [36,39], visuoconstructional praxis [36],
attention [39], memory [32], and executive function [32,38]. A recent
meta-analysis analyzed 33 studies of cognitive function in adults with
T1DM and found significant reductions in overall cognition, both fluid
and crystallized intelligence, speed of information processing,
psychomotor efficiency, visual and sustained attention, mental
flexibility, and visual perception, when compared with controls [40].
There was no significant difference in motor speed, memory, selective
attention, and language. Lowered cognitive performance in diabetic
patients appeared to be associated with the presence of microvascular
complications, but not with the occurrence of severe hypoglycemic
episodes or with poor metabolic control [40].

Many longitudinal studies have found lower intelligence quotient
(IQ) scores, reduced mental efficiency, and worse school performance
in children with T1DM [37, 38, 41,42]. Nevertheless there are many
factors that can influence on the cognitive performance of these
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patients. The age of onset of diabetes mellitus and the quality of
glycemic control are possibly the two most important ones. In a
population of children with T1DM evaluated 6 years after disease
onset, those who developed T1DM at less than 4 years of age had
impaired executive skills, attention, and processing speed when
compared with those who were diagnosed after 4 years of age [38].
The ‘early-onset effect’ has been attributed to the adverse effects of
metabolic disturbances on the developing brain and appears to persist
through adulthood [43].

Adequate glycemic control also appears to be importantly
associated with cognitive performance in patients with T1DM.
Psychomotor abilities, motor speed [30,44], attention, memory, verbal
IQ scores [45–47], and academic achievements [46] are improvedwith
better glycemic control [47]. On the Diabetes Control and Complica-
tions Trial (DCCT) patients with T1DM with mean serum glycated
hemoglobin (HbA1c) lower than 7.4% performed significantly better
on tests of motor speed and psychomotor efficiency than those
subjects which mean HbAlc greater than 8.8% during the 18-year
follow-up [44]. In addition, patients with acute hyperglycemia
perform worse on tests of cognitive function, showing increased
number of mental subtraction errors, loss of inhibition and focus,
impaired speed of information processing, decreased attention, and
impaired working memory [48,49]. Conversely, no association
between multiple severe episodes of hypoglycemia and impaired
cognitive function in patients with T1DM was found in the DCCT [44].

In a metanalysis, the presence of other diabetic complications was
associated with poorer cognitive function in most studies involving
T1DM patients [40]. Deficits in fluid intelligence, information proces-
sing speed, attention, and concentration have been associated with
the presence of retinopathy [50]. Whereas complications like retino-
pathy and nephropathy usually require years of diabetes before
becoming clinically apparent, the onset of cognitive impairment has
been found to occur earlier in the course of disease among T1DM
patients [36]. Among children with T1DM, deficits in cognitive
function have been detected as early as 2 years after diagnosis. In
the follow-up, these children experienced less increase in general
intelligence, vocabulary, block design, processing speed, and learning
in general [36]. Proliferative retinopathy, macrovascular complica-
tions, hypertension, and duration of diabetes were associated with
poorer performance on tests measuring psychomotor speed and
visuoconstructional ability [30,31,39]. In another study, the occur-
rence of distal symmetrical polyneuropathy was related to worse
cognitive function on most domains, except for memory [30].

2.2. Type 2 diabetes

Patients with T2DM have also been found to have specific and
global cognitive deficits characterized by decreases in psychomotor
speed [51,52], complex motor functioning [52], executive functions
[52–54], memory skills [53–55], processing speed [55], immediate
and delayed recall [56], verbal fluency [52, 57], attention [58] and
visuospatial abilities [59]. Another neurocognitive dysfunction fre-
quently observed in patients with T2DM is (vascular) depression,
which is twice more common in these patients than among controls
[60]. Besides sharing a common neurovascular pathogen with
cognitive dysfunction, depression is also a cause of cognitive
dysfunction by itself, since it may severely impairs attention
[53,60,61]. A comparison in the cognitive performance between
T1DM and T2DM is summarized in Table 1 and the neurocognitive
tests utilized on these studies are shown on Table 2.

Cross-sectional studies evaluating cognition in T2DM patients
demonstrate that immediate noncontextual, verbal memory, proces-
sing speed, and brief cognitive screening measures are much worse in
diabetic patients than among controls [62]. Six out of 11 population
studies demonstrate that T2DM patients are more likely than controls
to show poor performance on brief cognitive screening measures. All
the other measures were less likely to show significant differences
between well-treated type 2 diabetic patients and controls. Taken
together, the results of well-controlled cross-sectional populational
studies demonstrate that findings across all evaluated neuropsycho-
logical measures are inconsistent [62].

Longitudinal studies, however, almost universally reveal a higher
risk of dementia or significant cognitive decline in diabetic popula-
tions [9,63]. Studies with cognitive screening instruments or batteries
of more comprehensive neuropsychological tests show that the rate of
cognitive decline due to aging is increased 1·5-fold to 2·0-fold in
individuals with T2DM [64], albeit a study of cognitive function in the
oldest old (age at study entry 85 years) did not find any significant
association between T2DM and accelerated cognitive decline [65,66].
This particularity among the oldest-old population may be a form of
‘survivor effect’, in which T2DM people with more advanced vascular
burden already died from myocardial infarction, stroke, or even
dementia or obesity-associated neoplasms [65]. Besides, as most
westerners start to lose weight after middle age is over, many people
above 80might actually improve their T2DM control by losing weight.
Alternatively, people with neoplasms or dementia may start to
importantly lose weight even before the diagnosis of such conditions
[65]. This phenomenon, however, is not to be confused with the fact
that mild-moderate caloric restriction (30%) through life extends
lifespan in invertebrates and vertebrates, including primates and,
probably, humans [67]. Among themainmechanisms bywhich caloric
restriction extends lifespan seems to be the facts that it (1) increases
insulin sensitivity and (2) decreases the formation of AGEs and (3)
ROS, resulting in less oxidative stress [67].

The risk of Alzheimer's disease (relative risk [RR] 1·5–27·0) and
vascular dementia (RR 2·0–2·5) is increased in T2DM [66]. If we
assume the prevalence of T2DM to be about 15% in people older than
60 years, a RR of 1·5–2·0 translates into a diabetes attributable risk for
dementia of 7–13% [6]. This increased risk remains significant even
after adjusting for the presence of other vascular risk factors [68].
Alzheimer's disease is by far the most common cause of dementia
among people with T2DM. In fact, among all incident cases of
dementia occurring in people with T2DM, Alzheimer's disease is the
diagnosis in about 82.5% [20] to 91% of the situations [19].

As stated above, the enhanced risk for developing AD in diabetic
patients remains strong even when vascular factors are controlled for,
suggesting an importance of non-vascular mechanisms for AD
pathogenesis [69]. Several factors might contribute to the increased
AD risk in diabetes mellitus, including defects in insulin signaling,
accumulation of pathological Aβ, and hyperphosphorylated Tau [70].
Some studies have shown that the association between diabetes
mellitus and Alzheimer's disease is particularly strong among
Apolipoprotein E epsilon-4 allele (APOEɛ4) carriers. Indeed, indivi-
duals with T2DMwho possess the APOEɛ4 allele have twice the risk of
developing Alzheimer's disease, as compared with non-diabetics
subjects with the APOEɛ4 allele [70]. Brain pathology from T2DM
patients frequently includes heavy deposition of β-amyloid and
Neurofibrilary Tangles (NFTs) [69]. Moreover, amyloid deposition is
markedly increased in individuals with both diabetes and the APOEɛ4
genotype [70,71].

Glycemic control appears to play an important role in preserving
cognitive performance among patients with T2DM [72]. In patients
with T2DM, studies have demonstrated an inverse relationship
between serum HbAlc and working memory [53,54], executive
functioning [53], learning [52], and complex psychomotor perfor-
mance [52,73]. This finding supports the hypothesis that an
inadequate glucose control is associated with worsening cognitive
function. Another important finding is the association between both
the duration and severity of T2DM at one side, and the degree of
central (brain) and peripheral nervous system involvement, as
demonstrated by decreased cognitive function and peripheral neuro-
pathy, respectively [51, 54, 58]. Insulin-dependent T2DM subjects had



435J.S Roriz-Filho et al. / Biochimica et Biophysica Acta 1792 (2009) 432–443
a higher risk of major cognitive decline than those with an adequate
metabolic control only with oral hypoglycemiants [74].Conversely,
repetitive episodes of moderate to severe hypoglycemia have been
implicated as one possible etiology for long-term cognitive dysfunc-
tion in T2DM [73], even though the strongest evidence for memory
disturbances is for the short period in which the subject is
hypoglicemic [75,76].

3. Neuroimaging in diabetes

Several studies on the cerebral structure of patients with T1DM
and T2DM have evidenced cortical and subcortical atrophy, besides
increased leukoaraiosis (WMHLs), which were associated with
impaired cognitive performance even after controlling for cardiovas-
cular risk factors such as hypertension [14,15,77]. A strong interaction
between diabetes and hypertensionwas observed, such that when the
two conditions are present together, they result in a multiplicative
greater risk for cortical brain atrophy [78]. A study involving elderly
subjects have also found that hippocampus and amygdala atrophy
weremore pronounced in persons with T2DM [79]. Interestingly, after
further adjustment for classical vascular risk morbidity, these results
remained statistically significant. However, a similar study in subjects
with T1DM failed to identify significant reductions in hippocampal
and amygdala volumes, although these subjects did present mild
ventricular enlargement and slight global cerebral atrophy [80].

Population-based studies indicate that diabetes is a risk factor for
silent and symptomatic brain infarcts seen with MRI [81,82]. The
presenceofmicrovascularcomplications isassociatedwithbothreduced
cognitive performance [50] and accelerated cognitive decline [31]. In
patients with T2DM, WMHLs and subcortical/periventricular atrophy
have been associated with reduced performance on tests of attention,
executive function, information processing speed, and memory [15,83].

Diabetes severity and glycemic control may influence the degree of
brain's lesion involvement. Some studies which have included elderly
people in poor glycemic control found impairments in psychomotor
efficiency and memory associated with WMHLs and subcortical brain
atrophy [15]. Among well-controlled T2DM of less than 10 years
duration, deficits on hippocampal-based memory performance and
selective MRI atrophy of the hippocampus were found in comparison
with age-matched controls [84]. Among these well-controlled indivi-
duals, HbA1c serum levelswere inversely related to head-size adjusted
hippocampal volumes. Higher HbA1c levels were also correlated with
lower gray matter density in important areas for language, memory,
and attention [85]. Higher HbA1c levels were also associated with
reductions of gray matter in the right cuneus and precuneus regions,
and reductions of white matter in the right posterior parietal region
[86]. In addition, the occurrence of hypoglycemia in both T1DM and
T2DMgroupswas correlatedwith increased cerebral atrophy in several
cerebral regions, more specifically in certain areas of the frontal and
temporal lobes, besides the thalamus [85,86,87].

Some other studies have been shown that the presence of
peripheral diabetic complications is more associated with lesions of
certain specific cerebral areas [83,86]. For example, T1DM patients
with proliferative retinopathy had decreased gray matter density in
the right inferior gyrus and right occipital lobe. They also presented
significantly smaller white matter volume compared with those
patients with diabetes but no retinopathy [86]. The occurrence of
small, punctate, white-matter lesions is higher in patients with
retinopathy than in those without it [50].

4. Pre-diabetes and the metabolic syndrome (MetS)

Healthy individuals are able to maintain their plasma glucose
levels constantly around 4–5 mM and, when blood glucose rises
following meals, the insulin secreted by the pancreas also rises to
maintain normal glycemia [1]. Insulin regulates the uptake of glucose
by the tissues and it storage as glucogen. The major sites of insulin
action are the liver, fat tissue, skeletal muscle and the brain, in special
some regions with a high demand for glucose [1]. When sensitivity to
insulin is reduced on these tissues, this is termed insulin resistance
(IR). The occurrence of IR combined with a pancreatic insufficiency to
provide enough and prompt insulin secretion to maintain euglycemia
is termed T2DM. The term ‘pre-diabetes’ is employed when, in the
presence of IR, enough insulin is still produced to prevent overt
diabetes, but it results in impaired fasting glucose and/or impaired
glucose tolerance [1,19,20].

In pre-diabetes, body tissues are exposed to abnormally high levels
of insulin for extended periods, what may persist for many years/
decades. Hyperinsulinemia seems to be implied in neurodegeneration
and cognitive decline [19,20]. The hypothesis that diminished
glucoregulatory control is related to decrements in cognitive perfor-
mance is supported by studies which evaluated neuropsychological
performance among pre-diabetic adults [20]. Impaired glucose
tolerance and hyperinsulinemia were associated with reduced Mini
Mental State Examination (MMSE) scores [87] and have also been
linked to increased risk for mild cognitive impairment (MCI). Subjects
with MCI are at increased risk for dementia [20,88]. Interestingly,
some studies have demonstrated that patients with impaired glucose
tolerance may have the same pattern and severity of cognitive deficits
as patients with T2DM [89]. In another study, reduced glucose
tolerance was associated with decreased general cognitive perfor-
mance, memory deficits, and hippocampal atrophy on the MRI [90].
Multiple investigations on patients with impaired glucose tolerance
have shown them to have lower MMSE and long-termmemory scores
[91], impaired verbal fluency [57], increased risk for Alzheimer's
disease [92], and increased odds for vascular dementia [93], as
compared with control subjects. However, not all studies found that
patients with pre-diabetes perform worse than normoglycemic
individuals [58,94–96].

Impaired glucose tolerance is one component of MetS, together
with central obesity, hypertension, hypertriglyceridemia and reduced
HDL-cholesterol. Each component of the MetS has been shown to be
an independent risk factor for stroke, but hyperglycemia might be
more important than the other components in the pathogenesis of
both peripheral and central neuropathy [97]. Our group has recently
evaluated 422 community-dwelling elderly (≥60) in Brazil, in order
to investigate the association between cognitive impairment and the
frontal-subcortical (geriatric) syndrome (FSCS), at one side, and MetS
in the other side. FSCS, which is caused by ischemic disruption of the
frontal-subcortical network, was defined as the presence of at least
one frontal release sign (grasping, palmomental, snout, or glabellar)
plus the coexistence of ≥3 the following criteria: (1) cognitive
impairment, (2) late-onset depression, (3) neuromotor dysfunction,
and (4) urgency incontinence. We found that MetS was significantly
associated with FSCS (OR=5.9; CI: 1.5–23.4) and cognitive impair-
ment (OR=2.2; CI: 1.1–4.6) among stroke-free subjects [22].

Obesity is associated with a significant reduction in insulin
sensitivity, as insulin sensitivity inversely correlates with Body Mass
Index (BMI) [98].With theworldwide rapidly increasing prevalence of
obesity, there is a corresponding increasing prevalence of insulin
resistance and pre-diabetes [98,99]. Fifty percent of adults have central
obesity and the occurrence of central obesity in midlife increases the
risk of dementia independent of diabetes and cardiovascular comor-
bidities [100]. Generalized brain atrophy and regional alterations in
gray matter volume occur in obese male subjects, suggesting that
subjects with a high BMI are at greater risk for cognitive decline [101].

5. Pathophysiologic mechanisms

Mechanisms underlying the development of nervous system
lesions and cognitive dysfunction in patients with disturbances in
the insulin homeostasis have not been completely elucidated. There
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are supporting evidence from many hypotheses in explain the
pathophysiology of neurodegeneration associated with diabetes,
prediabetes, and MetS [98, 99]. The main hypotheses pointing to the
potential impliedmechanisms involves hyperglycemia, hypoglycemia,
(micro)vascular disease, insulin resistance, and hyperinsulinism, all
which are well-represented by the concept of MetS (Fig. 1). Besides,
the MetS construct includes central obesity, hypertension, and
dyslipidemia, all of which are related to hyperinsulinism [98]. The
above three other components of MetS are not necessarily present in
(pre)diabetes [98, 99], but are also important risk factors for cognitive
dysfunction [22]. The possibly involved mechanisms relating these
other MetS components to cognitive dysfunction are not fully
discussed in this review, but are also cited in Fig. 1.

Many cognitive dysfunctions associated with metabolic syndrome
may have their common pathophysiologic mechanism unified by
invoking the concept of the FSCS (22; see item 4, penultimate
paragraph).

5.1. Hyperglycemia

Glucose is the main energy substrate of the human brain; however
the occurrence of chronic hyperglycemia can be deleterious for the
brain [102]. The brain, which constitutes only 2% of the human body
weight, utilizes almost 25% of total body glucose [102]. The glucose
metabolism is used not only for energy substrate but also the
breakdown of glucose provides important compounds for neurons,
including neurotransmitters such as acetylcholine and glutamate
[103]. Several studies have shown that hyperglycemia has toxic effects
and can lead to slowly progressive functional and structural
abnormalities in the brain [10]. Chronic hyperglycemia could, thus,
be one of the determinants of cognitive decline in people with
abnormal glucose metabolism [104,105].

The deleterious effects of hyperglycemia are mediated through an
increased flux of glucose through the polyol and hexosamine path-
ways, disturbances of intracellular second messenger pathways, an
imbalance in the generation and scavengers of ROS, and by AGEs [106].
Besides being directly implied in aging (last two processes), these
phenomena also contributes to microvascular changes, what leads to
microinfarcts and generalized brain atrophy/WMHL, which, in turn,
Fig.1. Key components of theMetabolic Syndrome (MetS) and their possible pathophysiologi
(see Ref. [226]). Obesity, especially central obesity is a key component for the developmen
resistance, and may aggravate the severity/control of most components of the MetS. Hypogl
metabolic syndrome may have their common pathophysiologic mechanism unified by invoki
penultimate paragraph).
result in cognitive decline and dementia [10,107,108]. Three mechan-
isms that mediate the toxic effects of hyperglycemia/hyperinsuline-
mia are responsible for the aging process of the brain, namely: (1)
accumulation of AGEs; (2) increasing formation of ROS, with
consequent increased oxidative stress; and (3) microvascular pathol-
ogy [23,108,109]. Thus, these effects on cognition and brain structure
might be responsible for the “accelerated brain aging” that occurs in
subjects with diabetes [23,110].

The finding of accelerated brain aging in DM is confirmed by
experimental models in rats [111]. Alterations include neuroanatomi-
cal and neurochemical changes, impairments in stress reactivity and
hypothalamic–pituitary–adrenal axis activity, as well as deficits in
insulin signaling and neuroplasticity. Some studies have shown that
RAGEs, galectin-3 (a proatherogenic molecule), and the polyol
pathway activation were all increased in diabetic rat brains, whereas
activity of the glycolytic enzyme glyceradehyde-3-phosphate dehy-
drogenase was decreased, indicating elevated superoxide levels [112].
Neuronal apoptosis and suppression of cell proliferation/neurogen-
esis are observed in the hippocampus of diabetic rodents. Nuclear
factor B transcription factors, a proinflammatory gene marker up-
regulated by AGEs, and S-100 protein, a marker for brain injury that
can bind to RAGEs, were both up-regulated in the hippocampus of
diabetic rats [113–116]. These data suggest that insulin resistance,
hyperinsulinism and hyperglycemia, causing accumulation of AGEs
and ROS, may trigger a cascade of events that leads to neural aging and
hippocampal atrophy, which may represent the initial neuronal
damage in diabetes mellitus [117].

In addition, neurochemical changes have also been observed and
may contribute to cognitive dysfunction. Insulin resistance impairs
long-term potentiation, a fundamental mechanism for memory
consolidation [118]. Other, neurotransmitter functions which are
altered in diabetes mellitus include decreased acetylcholine produc-
tion [119], decreased serotonin turnover, decreased dopamine activity,
and increased norepinephrine [120,121].

5.2. Hypoglycemia

A common and feared side effect of diabetes treatment is
hypoglycemia. The risk of hypoglycemia is a barrier to achieving and
cal links with cognitive decline. All MetS components may contribute for atherosclerosis
t of the other constituents of the syndrome. Aging is associated with increased insulin
ycemia is not represented here (see text). Many cognitive dysfunctions associated with
ng the concept of the ‘frontal-subcortical geriatric syndrome’ (Ref. [22]; see text, item 4,
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maintaining optimal glycemic control. It is widely recognized that
prolonged and severe hypoglycemia may leads to permanently brain
damage, besides its immediate effects on the brain which acutely
affects cognition, mood, and conscious level [122,123,124]. What
remains controversial is if repeated minor episodes of hypoglycemia
may contribute to cognitive dysfunction [125]. Hypoglycemia also
exerts profound effects on various constituents of the blood and the
vasculature. Although the effects are transient and unlikely to exert
any long-term consequences on a healthy circulation, the potentially
deleterious effects on a damaged vasculature should be considered.
Recurrent exposure to hypoglycemia may exert an important adverse
effect when the vasculature has already become compromised by
macro- and microangiopathy [126].

In thepresenceof hypoglycemia, several responses occurwithin the
brain, including activation of the central sympathetic nervous system,
promoting physiological changes manifested as autonomic symptoms
such as sweating, tremor, a pounding heart, hunger, and anxiety
[127,128]. Cognitive dysfunction is experienced subjectively in the form
of neuroglycopenic symptoms, including difficulty in concentrating,
drowsiness, and incoordination [128]. Perception of these symptoms
warns the patient, who prompt action is required to treat the
hypoglycemia and restore blood glucose to normal levels. Most
cognitive modalities are impaired when blood glucose falls below
2.8 mMol/L. Tests that require mental speed and that are complex or
demandahigh level of attentionareaffectedmost,while tests of simple
motor function and reaction time are relatively preserved [129].

Recurrent severe hypoglycemiamayoccasionally cause sub-clinical
cerebral injury or permanent cognitive impairment [130,131]. In these
cases, humanautopsystudieshave shown laminar,multifocal ordiffuse
necrosis andgliosisof the cerebral cortexandchromatolysisof ganglion
cells [132]. The regions more vulnerable to hypoglycemia include the
cortex, basal ganglia, and hippocampus [123]. In addition, there is a
possible relationship between early nocturnal hypoglycemia during
sleep (a time in which consolidation of memories occurs), and
cognitive dysfunction [133]. Conversely, most studies have not shown
neurocognitive deficits associated with nocturnal hypoglycemia
induced later during the sleeping period [134,135].

5.3. Vascular disease

Diabetic patients have an increased risk of developing cerebrovas-
cular disease, and many have established micro- and macrovascular
complications of varying severity. Cerebrovascular disease related to
diabetes mellitus is more pronounced in the older age group [63]. It is
now well recognized from studies using both animal and human
models that atherogenesis contains a significant inflammatory
component, which contributes to its progression and to the
subsequent emergence of thrombotic complications [136]. This has
shifted the focus of research from an examination of traditional
cardiovascular risk factors to the investigation of processes that
involve the vasculature at a molecular level. These molecular
processes preferentially affects cells that are directly implicated in
atherogenesis, such as endothelial cells, macrophages, monocytes,
platelets and smooth muscle cells [136].

Diabetesmellitus is an important risk factor for strokeand isalsoone
of themost consistent predictors for recurrent stroke or for stroke after
a Transient Ischemic Attach [137,138]. This diabetes-related increased
risk for recurrent stroke ranges from 2.1 to 5.6 times the risk of
nondiabetic patients [139,140], and is independent of glucose control
during the interstroke period [141]. Diabetes and impaired glucose
tolerance have been associated with increased Carotid Intima-Media
Thickness (CIMT) [142,143]. Diabetic patients who have a stroke have
significantly greater CIMT than both diabetic subjects without stroke
and nondiabetic patients [144,145]. Carotid Intima-Media Thickness is
directly related to the duration of diabetes and glucose control, as
evidenced by the Insulin Resistance Atherosclerosis Study [146].
Some studies have demonstrated the existence of a basal chronic
systemic inflammatory state associated with endothelial dysfunction,
platelet hyperactivity, and microvascular complications of retinopathy
and nephropathy in diabetic patients [147–149]. In the EURODIAB
prospective complications study, inflammatory markers like C-
reactive protein, interleukin-6 and tumor necrosis factor-α were
found to be strongly and independently associated with vascular
disease in people with T1DM [150]. Even in the absence of vascular
complications, surrogate markers of endothelial dysfunction, includ-
ing C-reactive protein, vonWillebrand factor and vascular cell
adhesion molecule-1 are elevated in T2DM patients [151,152]. More-
over, plasma concentrations of the anti-inflammatory cytokine
interleukin-10 are lower in people with type 2 diabetes [153].

Macrovascular and microvascular disease both cause significant
morbidity and mortality in people with diabetes mellitus. Thickening
of capillary basement membranes, the hallmark of diabetic micro-
angiopathy, has been found in the brains of patients with diabetes
[154]. These patients have a 2- to 6-fold increased risk for thrombotic
stroke. Vascular disease has long been hypothesized to contribute to
abnormalities in cognition [122]. Macrovascular disease is not only
more common, but is more aggressive and widespread in people with
diabetes than in non-diabetic subjects [155]. While this vascular
outcome occurs both in T1DM and T2DM, its magnitude and severity
is significantly greater in T2DM due to the co-existence of multiple
cardiovascular risk factors, including hypertension and dyslipidemia.
Conversely, autopsy studies of patients with long-standing T1DMhave
shown important changes possibly related to microvascular disease,
including diffuse brain degeneration, pseudocalcinosis, demyelination
of cranial nerves and spinal cord, and nerve fibrosis [156,157].

PatientswithDMhavealsobeen found tohavedecreasedglobal rates
of cerebral blood flow, which is correlated with disease duration. The
association of ischemia and hyperglycemia may bemore detrimental to
the brain. Even modestly elevated blood glucose levels during a
cerebrovascular event may contribute to greater infarcted areas [158].
Two possible mechanisms to explain the synergism between hypergly-
cemia and ischemia are lactate and glutamate accumulation. Hypergly-
cemia provides more substrate for lactate to form, worsening cellular
acidosis, andprovidingaccumulationof glutamate,which is alsoa strong
neurotoxic neurotransmitor at very high concentrations [122,159,160].

Diabetes mellitus is associated with a hypercoagulability state
which is characterized by increased concentrations in anti-fibrinolytic
and other procoagulant factors, as well as by alterations in Nitric Oxide
(NO) metabolism. This hypercoagulability is associated with
enhanced risk for thrombotic vascular events [161–163]. Plasminogen
activator inhibitor-1 and antithrombin III, which inhibit fibrinolysis, as
well as the tissue plasminogen activator antigen, a marker of impaired
fibrinolysis, were consistently found to be elevated in IR phenotypes
[164–166]. Some studies have further suggested that procoagulant
factors, such as factor VII, factor VIII, and the von-Willebrand factor
also rise with the degree of insulin resistance [161,167]. Another
important mechanism of diabetes hypercoagulability is platelet
hyperreactivity. Studies in diabetic patients have found an increased
status for platelet aggregation, which is explained by increased
platelet response to ADP and elevation of thromboxane A2 concen-
trations [168,169]. This enhanced response to ADP may be mediated
by the upregulation of GPIIb-III receptors and by the failure of insulin-
induced inhibition of platelet aggregation that occurs in DM [170,171].
Patients with (pre)diabetes have also decreased endothelium-depen-
dent vasodilatation; a consequence of either decreased NO production
or impaired NO metabolism [172–174].

5.4. Insulin resistance, tau hyperphosphorylation, and the amyloid
cascade

Besides being a modulator of food intake and energy homoeostasis,
insulin is, also an important neurothrophic factor [176–181]. It
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modulates brain activity, above all for such high glucose demanding
functions such as memory. AD patients were found to have lower than
normal CSF levels of insulin [181]. Howcanclinical hyperinsulinismbe a
risk factor for AD whereas lab experiments evidence insulin to be an
important neurothrophic factor? These two apparent paradoxal find-
ings may be reconciliated by evoking the concept of insulin resistance.
Whereas insulin is clearly neurothrophic at moderate concentrations,
toomuch insulin in thebrainmaybeassociatedwith reducedamyloid-β
(Aβ) clearance due to competition for both principal depurative
mechanisms — the Insulin-Degrading Enzyme (IDE) [178]. Since IDE is
muchmore selective for insulin than for Aβ, brain hyperinsulinismmay
deprive Aβ of its main clearance mechanism [178].

Insulin crosses the blood-brain barrier, and might even be
produced locally in the brain, exerting its effects on cells by binding
to a specific cell surface receptor [180,181]. Insulin receptors are
distributed throughout the brain, being abundant in the hippocampus
and the cortex [182]. Binding of insulin to its receptor activates the
intrinsic tyrosine kinase activity of the cytoplasmic domain of the
insulin receptor. This leads to autophosphorylation of tyrosine
residues, what initiates several intracellular signaling cascades [183–
185]. In the brain, insulin influences the release and reuptake of
neurotransmitters, and also appears to improve learning and memory
[186]. The initial components of the insulin receptor signaling cascade
in the brain are largely similar to those of the periphery [186,187]. The
downstream targets of the cascade are quite different, however,
probably involving neuronal glutamate receptors, among others [186].

Insulin receptor-mediated signal transduction controls the activity
of several enzymes in a cascade-like manner. Phosphatidylinositol 3-
kinase (PI3K) is insulin-regulated and activates protein kinase B (PKB,
also known as Akt) [188,189]. PIP3 recruits PKB, to the plasma
membrane, where it is phosphorylated and activated by specific
protein kinases [190]. PKB has many important cellular targets
including glycogen synthase kinase 3 (GSK3). Phosphorylation of
the N-terminal region of GSK3 by PKB causes inactivation of GSK3,
reducing the phosphorylation of glycogen synthase (GS). Depho-
sphorylated GS is the active form of the enzyme. The active GS
increases the rate of conversion of glucose 6-phosphate to glycogen.
This pathway links the insulin receptor at the cell surface with
enzymes of glycogen metabolism within the cell [191]. In this way,
GSK3 generally opposes the actions of insulin. Thus, GSK3 inhibits
glycogen synthesis, glucose uptake, and also alters the expression of
genes regulated by insulin [192].

Glycogen synthase kinase 3 is highly expressed in all eukaryotes
cells and is involved in a number of physiological processes ranging
from glycogen metabolism to gene transcription [193]. There are two
isoforms of the enzyme that are ubiquitously expressed in mammals:
GSK3α and GSK3β [193,194,195]. There is evidence that GSK3 plays a
central role in AD, and that its deregulation accounts for many of the
pathological hallmarks of the disease in both sporadic and familial AD
cases, leading to formulation of the ‘GSK3 hypothesis of AD’ [196].
Glycogen synthase kinase 3 is implicated in the hyperphosphorylation
of tau, increased production of β-amyloid and in inflammatory
responses. Glycogen synthase kinase 3 also reduces acetylcholine
synthesis and is a key mediator of apoptosis. These findings are in
accordance with alterations present in AD, including cholinergic
deficit, memory impairment and neuronal loss [197,198].

There is increasing evidence linking insulin resistance to cognitive
decline and dementia in diabetes [24,199]. There are alterations in
cerebral insulin receptor signaling, leading to a cerebral insulin
resistant state. Alterations in brain's insulin and its receptor may
disrupt glucose homoeostasis and affect amyloid metabolism. The
formation of AGEs and ROS may play an important role in translating
insulin resistance into amyloid deposition and tau phosphorylation
[25,26]. Indeed, cerebral insulin resistance has been implicated in
accumulation of amyloid-β-peptide (Aβ) and tau protein, which are
the main components of senile plaques and neurofibrillary tangles
(NFTs), respectively. These two neuropatholical features are the
pathological hallmark of Alzheimer's disease [25,175]. One hypothesis
to explain the above relationships is that GSK3 activity might be
enhanced in patients with insulin resistance, representing a possible
link between insulin resistance and Alzheimer's disease [200,201].

Several studies point to an intriguing relationship between
diabetes mellitus and Alzheimer's disease. Patients with AD have
lower Cerebrospinal fluid insulin levels and reduced insulin-mediated
glucose disposal when compared to healthy control subjects
[202,203]. While there is very little insulin mRNA in the brain, recent
ultra-sensitive PCR data show that insulin message can be detected in
postmortem human brain, being reduced in AD brains. This finding
leaded the authors to suggest that Alzheimer's disease could be a
“type III diabetes” due to a marked reduction in CNS insulin
concentrations [181,204]. In addition, knockout of the insulin receptor
gene is not sufficient to cause cognitive deficits or neurodegeneration
even though some regions show enhanced GSK3β activity [205]. The
observation that activation of the insulin receptor was impaired in
brain autopsy samples of AD patients, has given rise to the notion that
Alzheimer's disease could be qualified as “an insulin resistant brain
state” [206].

Another important link between insulin resistance and the
amyloid cascade may be related to the IDE. Insulin degrading enzyme
is ametalloprotease enzyme responsible for insulin degradation and is
also the main enzyme responsible for Aβ degradation [178]. Insulin
degrading enzyme is secreted to the extracellular space by microglial
cells in the brain, where it degrades Aβ peptide, leading to reduced Aβ
peptide concentration in the brain, thus reducing aggregation and
plaque formation [207]. Insulin degrading enzyme levels have been
reported to be decreased in the brains of AD patients [208,209],
especially in the hippocampus [210]. It has also been hypothesized
that hyperinsulinemia in people with pre-diabetes and T2DM
effectively sequesters IDE, reducing Aβ peptide degradation. This
would increase levels of Aβ peptide, and promote many of the
pathological features associated with Alzheimer's disease. Supporting
this model, the affinity for the binding of insulin to IDE is much greater
than the one for the Aβ peptide [211].

In patients with Alzheimer's disease, IDE expression in the
hippocampus is substantially reduced, relative to controls, in particular
among patients with the APOEɛ4. This latter observation could explain
the potential interaction betweendiabetes and theAPOEɛ4 genotype in
multiplying theriskofdementia [209]. Curiously, although thepresence
of the APOEɛ4 is associated with an increased incidence of Alzheimer's
disease [212], it seems that insulin resistance is only a significant risk
factor for AD in those patients without APOEɛ4 [90,202]. Subjects with
ADwithout theAPOEɛ4hadalso improvedmemoryscores in the setting
ofhyperinsulinemia,whichwasnot the case forpeoplewith at least one
APOEɛ4 allele [213,214]. However, in the Honolulu-Asia Aging Study,
those subjects with both T2DM and the APOEɛ4 allele had an additive
increased risk of dementia and Alzheimer's pathology [8]. In despite of
this apparent contradiction, it seems that IR, T2DM and APOEɛ4 are
distinct risk factors for the development of Alzheimer's disease, a
hypothesis that is supported by the fact that those with diabetes had a
lower prevalence of the APOEɛ4 [215].

6. (Pre)diabetes and non-age-related psychiatric diseases

The relationship between pre-diabetes/diabetes mellitus and some
non-age-related psychiatric diseases go beyond the scope of this
review. We could not, however, let unmentioned that patients with
mental illnesses such as schizophrenia, schizoaffective, and bipolar
disorders have an increased prevalence of metabolic syndrome and
diabetes mellitus — as compared with the general population [216].

The high prevalence of metabolic syndrome in schizophrenic
patients has assumed greater significance since the increasing use of
second-generation antipsychotics. These drugs have been associated
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with substantial weight gain, a major risk factor for glucose
metabolism abnormalities [217]. Conversely, several studies
[218,219,220] have been suggesting that schizophrenia is associated
with abnormal glucose metabolism independently of antipsychotic
use. In addition, some studies have suggested that first-degree
relatives of schizophrenic patients are at increased risk of diabetes
[221]. These findings suggest schizophrenia might also be associated
with abnormalities in glucose metabolism, regardless of the use of
antipsychotics [222].

7. Conclusions

The present review reinforces the view that diabetes is strongly
associated with multiple alterations in the proper functioning of the
brain. T1DM and T2DM. An important and common complication of
both T1DM and T2DM is cognitive dysfunction. As expected, however,
the specific alterations in cognitive abilities between the two types of
diabetes do not completely overlap. In patients with T1DM, specific
and global deficits evolving speed of information processing,
psychomotor efficiency, attention, mental flexibility, and visual
perception seem to be present, whereas in patients with T2DM, an
increase in memory deficits, a reduction in psychomotor speed, and a
reduced frontal lobe/executive function have been found. Differences
in methodology across studies, including inadequate sample sizes,
difficulty in identifying valid control groups and differing test
sensitivities, may account for the variability in these findings between
the two main types of DM. Alternatively, hyperinsulinemia and
comorbidities (MetS components) in T2DM, but not in T1DM, might
be contributing to some of these differences.

It is also important to consider the age of onset of the diabetes, the
glycemic control status, and the presence of diabetic complications. The
impact of diabetes on cognitive functions seems to be greater in older
people with worse glycemic control and long duration of the disease.

Neuroimaging studies also highlighted several structural cerebral
changes that occur in associationwith DM. Many populational studies
have shown that DM is a risk factor for (silent) cerebral infarcts and is
associated with a slight degree of cortical and subcortical atrophy.
Most MRI studies revealed an association between DM and the
occurrence of lacunar infarcts and WMHLs. In line with observations
from studies of cognitive function in DM, findings from populational
studies also indicate that poorer glycemic control is associated with
accelerated cerebral atrophy. The degree of cortical atrophy encoun-
tered in DM subjects suggests that diabetes may also have global, non-
vascular effects on the brain. Alternatively, small-vessel disease may
contribute for this generalized brain atrophy frequently found in DM
individuals. Several molecular and biochemical experiments in
cellular and animal lab models also supports the hypothesis that
mechanisms other than vascular disease are involved in the increased
risk of AD in DM.

Many studies have revealed that people with pre-diabetes also are
at increased risk for developing adverse anatomical and functional
brain changes. As a consequence, mild cognitive decline may develop
even before of the installation of frank diabetes. Neuropsychological
profile of individuals with impaired glucose tolerance appears to
mimic what is typically observed in individuals with age-associated
memory impairment. However, not all studies found that patients
with pre-diabetes perform worse than normoglycemic individuals.
Given that cognitive impairment is not invariably found in older
diabetic patients, it is necessary to understand the factors that lead to
cognitive impairment and the other ones that protect from DM-
associated neurodegeneration.

The underlying neuropathologic changes associated with DM
have been described to be very similar to the ones usually associated
with ‘pure’ aging. In fact, DM is probably strongly associated with
an accelerated biological aging. Central neurological complications
associated with DM include an increased risk for dementia of both
vascular and Alzheimer's type. However, there are few detailed
epidemiological studies considering specific vascular risk factors vis-
à-vis the risk in developing Alzheimer's, Vascular, or mixed-type
dementia. Studies involving large population-based cohorts of elderly
people with pre-diabetes and DM, accessing the progress of (pre)
diabetes, MetS, vascular disease, and cognition are necessary.
Accelerated brain aging and disturbances of insulin metabolism in
the brainmay be additional factors that link DM to AD. This hypothesis
should be tested in prospective studies that include measures of
amyloid and tau-protein metabolism.

8. Perspectives

The establishment of a close relationship between insulin
resistance and Alzheimer's disease could open a large vein for the
development of novel preventive and therapeutic interventions for
these conditions. One possible future direction that might arise in
studying the molecular changes that occur in the brain in the
presence of insulin resistance is the elucidation of the pathophysiol-
ogy of the AD. Besides, the discovery of the most important link(s)
between DM and AD would be of extreme importance. Assuming
that insulin resistance is the main mechanism involved in neurode-
generation, studies utilizing available drugs to improve insulin
sensitivity, such as metformin and the thiazolidinediones [223].
However, there is as yet no evidence that they can decrease the risk
of cognitive decline besides and beyond their hypoglycemiant effect
[223]. New methods like the application of intranasal insulin, which
is able to quickly pass through the blood-brain barrier, are also
promising [224], but results are still conflicting [225]. Therefore,
more research is need before intranasal insulin and insulin sensitivity
enhancers can be considered useful in preventing and treating
cognitive dysfunction, be it in the presence or not of disturbances in
the blood glucose homeostasis.
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